SummeR CouRse: R Statistical Programming
Doel
De SummeR couRse programmeren in R vormt een eerste inleiding in de zeer populaire statistische softwarepakketten R Statistical Programming en RStudio. Na SummeR couRse programmeren in R, kan de cursist zelfstandig statistische analyses uitvoeren, resultaten beoordelen, visualiseren, en rapporteren met R en RStudio. R is op dit moment één van de meest geavanceerde en flexibele statistische programma’s en is bovendien open source (gratis). Het is in overleg mogelijk dat de cursisten voorbeelden aandragen uit hun eigen praktijk.
U krijgt les van docenten die zelf R-packages hebben geschreven, R-boeken hebben gepubliceerd en dagelijks R gebruiken in hun werk als senior onderzoeker, universitair docent of hoogleraar.
Inhoud
Tridata hecht er waarde aan om cursisten tijdens de cursussen hands-on ervaring op te laten doen, dus wordt er op basis van gedegen theorie meteen toegepast in de praktijk. Elke dag bestaat daarom voor ongeveer de helft uit oefeningen onder begeleiding van onze ervaren docenten. De cursist heeft de mogelijkheid om slechts 3 dagen te volgen. Op dag 1 t/m dag 3 ligt de focus op het aanleren van R-(Rstudio)vaardigheden, datamanagement en databewerking, datavisualisatie en (geautomatiseerde) rapportage. Op dag 4 en dag 5 wordt aandacht besteed aan een aantal statistische modellen, toetsen en functioneel programmeren (looping, cycling, iterating). De docenten werken zo veel mogelijk met Tidyverse en Tidyverse-vriendelijke packages.
Dag 1: Introductie R programmeren & datatransformaties
- Introductie R programmeren & RStudio
- Basis R programmeren: wat is een object, basis verschillende soorten objecten (zoals een variabele met 1 waarde)
- Wat noemen we een vector(kolom)
- Welke typen kolommen kunnen er zijn in een tabel (integer, double, string, logical, tekst, etc.)
- Bewerkingen op tabellen
- Filteren van rijen, selecteren van kolommen, aanpassen van kolommen, toevoegen van kolommen, kolomnamen veranderen, geaggregeerde statistieken uitrekenen
- Ketenen van opdrachten aan elkaar
- Overzicht van verschillende typen plots (wanneer welke te gebruiken?)
- Inleiding ggplot2
Dag 2: Datamanagement: R en RStudio voor datamanagement
- Geavanceerde eigenschappen van kolommen
- Werken met datums in tabellen
- Categoriale variabelen (factoren) in tabellen
- Werken met tekst
- Databestanden beheren
- Inlezen van tabellen uit verschillende soorten bestanden
- Exporteren van tabellen
- Koppelen van tabellen
- Herschikken van data (lange & brede tabellen)
Dag 3: Datapresentaties & Rapportage
- Grafieken
- Grafieken en exploratieve data-analyse (combinaties van typen variabelen in verschillende plots – wat maak je nu inzichtelijk met welk type plot)
- Additionele mogelijkheden met grafieken (facetwraps & facet grids)
- Aanpassen titels, vormen, kleuren & labelen punten
- Maken van rapporten – R Markdown
- Genereren van PDF, HTML of Word documenten
- Dynamisch genereren van rapporten
- Creëren van interactieve rapporten
Dag 4: Modellen en Functies
- Modelleren in R
- Lineaire modellen en residuen – beschrijving, toepassingen & selectie van variabelen
- Logistische modellen
Dag 5: Statistiek & Geavanceerde Analyses in R
- Statistiek in R
- Kruistabellen
- Statistische toetsen (t-toets, chi-kwadraattoets).
Doelgroep
Deze cursus programmeren in R is bedoeld voor personen met enige kennis van statistiek en statistische software, die ervaring willen opdoen met dit zeer populaire, en bovendien Open Source, statistische pakket.
Vereiste voorkennis
Enige bekendheid met basisstatistiek wordt voorondersteld.
Tools
De cursus werkt met de meest recente versie van R en RStudio.
Cursusdata
14 juli, 15 juli, 16 juli, 17 juli, 18 juli 2025
Lestijden
De lestijden zijn van 9:15 tot 16:00, met uitloop tot uiterlijk 16:15.
Studiebelasting
De cursus duurt 5 dagen. Per dag kun je rekenen op 8 uur studielast, op de cursusdag zelf. Daarnaast ben je in je vrije tijd nog 2 uur bezig met de voorbereiding en verwerking van de cursusdag. Dit is afhankelijk van de intensiviteit van de lesstof en jouw eigen opleidingsachtergrond.
Kosten en inschrijving
De kosten van de 5-daagse Summer Course programmeren in R bedragen € 2650. Als je ervoor kiest om slechts 3-daagse te volgen dan bedragen de kosten €1650. De cursusprijs is vrijgesteld van BTW (BTW-tarief 0%) en is inclusief cursusmateriaal, incl. R for Data Science boek van Hadley Wickham Garrett Grolemund, deelnamecertificaat, koffie/thee en lunches.
In-company training
Deze training kan in huis (bij uw organisatie) worden gegeven. In overleg past Tridata de cursus aan de wensen van de cursisten aan. Voor meer informatie kunt u contact met ons opnemen.
Plaats
Europalaan 400 | 3526 KS Utrecht
Waarom de cursus volgen bij Tridata?
– Tridata is het enige instituut dat een door de Vereniging voor Statistiek & Operationele Research (VVS-OR) erkende opleiding statistiek aanbiedt.
– De R cursus van Tridata is een multidisciplinaire cursus die wordt gegeven door drie verschillende docenten met ruime ervaring op het gebied van R, statistical modeling en machine learning, statistical software development, tekstanalyse, tekstmining, datavisualisatie en datamanagement.
– Tridata heeft in 2006 samen met de Faculteit Economie/Econometrie van de Erasmus Universiteit, R geïntroduceerd in Nederland.
De docenten
Dr. M. (Mark) van der Loo studeerde cum laude af in de informatische chemie aan de Katholieke Universiteit Nijmegen (een combinatie van scheikunde, wiskunde, en informatica). Sinds zijn promotie op een onderwerp uit de quantumfysica is hij werkzaam als statistisch onderzoeker bij het CBS, met als specialiteit statistical computing and modeling, data cleaning en text processing. Over deze onderwerpen publiceert hij op conferenties en in peer reviewed journals. Mark is expert op het gebied van R, Python, en (multicore) C programming en heeft verschillende R-packages op CRAN gepubliceerd. Een van die packages wordt onder andere door Wikimedia Foundation gebruikt voor tekstanalyse van Wikipedia-pagina’s. Mark werkt sinds 2012 als consultant en docent voor Tridata.
Drs. E. (Edwin) de Jonge studeerde af in de theoretische natuurkunde aan de Katholieke Universiteit Nijmegen. Na zich enkele jaren te hebben gespecialiseerd in softwareontwikkeling is hij als onderzoeker gaan werken bij het CBS, met als specialiteit statistical computing and modeling, datamanagement en datavisualisatie. Over dit laatste onderwerp publiceerde Edwin onder andere een paper voor de prestigieuze IEEE VisWeek conferentie. Edwin is expert op het gebied van verschillende programmeertalen waaronder C++, Javascript, Python en R. In die laatste taal ontwikkelde hij een package dat inmiddels meer dan 120.000 maal per maand wordt gedownload van de CRAN servers. Edwin werkt sinds 2012 als consultant en docent voor Tridata.
Mark van der Loo en Edwin de Jonge zijn auteurs van de boeken “Learning RStudio for R Statistical Computing” (Packt Publishing, 2012) en “Statistical Data Cleaning with Applications in R” (Wiley, 2018). In 2013 gaven zij een tutorial op de grootste R conferentie ter wereld (useR!2013) getiteld “An introduction to data cleaning with R”. Zij waren ook keynote speakers op useR conferenties in Boekarest, Los Angeles, Toulouse, Marrakesh, Madrid, etc.
Dr. ir. J. (Jan) van der Laan studeerde af op het gebied van signaalverwerking bij de de faculteit technische natuurkunde aan de Technische Universiteit Delft. Na zijn promotie op het gebied van medical physics is hij als statistisch onderzoeker werkzaam bij het CBS. Op het CBS houdt hij zich onder andere bezig met statistische analyse en regressietechnieken, datavisualisatie en het verwerken en koppelen van grote bestanden. Over deze onderwerpen publiceert hij op conferenties en peer reviewed journals. Jan is expert op het gebied van meerdere programmeertalen waaronder C++, Javascript, D3.js en R. Hij heeft bijdragen geleverd aan meerdere R packages op CRAN. Jan werkt sinds 2015 als consultant en docent bij Tridata.